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1. 

A rather limited amount of information is available in the case of vibrating circular
plates of rectangular orthotropy in spite of its technological importance [1]. The
situation is more critical in the case of annular plates and even more when the plate
thickness is not uniform [2, 3].

The present study deals with the determination of the fundamental frequency
of transverse vibration of the structural element shown in Figure 1. Two
independent computational mechanics schemes are used: the optimized
Rayleigh–Ritz method [4], and the finite element method making use of a very
efficient code [5].

Figure 1. Vibrating system under study.
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Figure 2. Finite element meshes: (a) b/a=0·1 (b) b/a=0· (c) b/a=0·3.

2.   

Using Leknitskii’s classical notation [1] one expresses the governing functional
in the form
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where W(x, y) is the amplitude of transverse vibrations. As shown in previous
studies [2, 3] the fundamental mode shape is approximated by means of a
polynomial of the form

W2Wa =A1(arg + br3 +1), (2)

where a and b are obtained substituting equation (2) in the conditions

W(a)=0,
d2W
dr2 +

n2

r
dW
dr br= a

=0 (3a, b)

in the case of an outer, simply supported edge. Equation (3b) is an approximate
requirement when the plate is rectangularly orthotropic but it is the exact
boundary condition if the plate is isotropic and for this case n2 = n.

When the annular plate is clamped at the outer edge one has two essential
boundary conditions,

W(a)=
dW
dr

(a)=0. (4a, b)

T 1

Fundamental frequency coefficients V1 =zrh/D(1) v1a2

of isotropic, annular plates of non-uniform thickness with
a free inner edge

R–R F.E. R–R F.E.
b/a c/a n=1/3 n=1/3 n=0·3 n=0·3

Isotropic
Simply Supported

0·1 0·2 4·8737 4·783 4·8352 4·753
0·3 4·7425 4·680 4·7110 4·655
0·4 4·6270 4·569 4·5993 4·547
0·5 4·5226 4·455 4·4966 4·435

0·2 0·3 4·6644 4·586 4·6532 4·580
0·4 4·5194 4·469 4·5139 4·467
0·5 4·4047 4·357 4·4010 4·357

0·3 0·4 4·5479 4·507 4·5586 4·519
0·5 4·4067 4·381 4·4211 4·397

Clamped
0·1 0·2 10·1532 10·012 10·1773 10·050

0·3 10·0514 9·955 10·0866 10·000
0·4 10·0310 9·944 10·0715 9·994
0·5 10·0470 9·960 10·0882 10·011

0·2 0·3 10·4010 10·293 10·4668 10·365
0·4 10·3907 10·314 10·4637 10·392
0·5 10·4122 10·348 10·4879 10·428

0·3 0·4 11·5171 11·451 11·6075 11·545
0·5 11·6241 11·572 11·7193 11·670

R–R, optimized Rayleigh–Ritz results; F.E., finite element results.
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T 2

Fundamental frequency coefficients V1 =zrh/D1(1) v1a2

of orthotropic, annular plates of non-uniform thickness
with a free inner edge

R–R F.E. R–R F.E.
b/a c/a n2 =1/3 n2 =1/3 n2 =0·3 n2 =0·3

Orthotropic
Simply Supported

0·1 0·2 4·3931 4·303 4·3509 4·261
0·3 4·2748 4·210 4·2403 4·171
0·4 4·1707 4·110 4·1401 4·074
0·5 4·0766 4·007 4·0476 3·973

0·2 0·3 4·2045 4·123 4·1925 4·099
0·4 4·0737 4·018 4·0679 3·997
0·5 3·9703 3·917 3·9663 3·898

0·3 0·4 4·0994 4·050 4·1115 4·041
0·5 3·9721 3·937 3·9882 3·931

Clamped
0·1 0·2 9·1520 9·013 9·1785 8·996

0·3 9·0602 8·656 9·0990 8·748
0·4 9·0422 8·725 9·0865 8·818
0·5 9·0565 8·791 9·1018 8·884

0·2 0·3 9·3753 9·267 9·4478 9·275
0·4 9·3660 9·287 9·4465 9·299
0·5 9·3854 9·318 9·4689 9·332

0·3 0·4 10·3814 10·315 10·4811 10·333
0·5 10·4778 10·425 10·5829 10·445

R–R, optimized Rayleigh–Ritz results; F.E., finite element results.

The exponential parameter g appearing in equation (2) constitutes Rayleigh’s
optimization parameter [4].

3.     

One-quarter of the plate domain was subdivided into 2400 elements. Figure 2
depicts the corresponding meshes for (a) b/a=0·1 (b) b/a=0·2 and (c) b/a=0·3.
As previously mentioned, ALGOR code [5] was used in the present analysis.

The fundamental frequency coefficients V1 were referred to the thicker portion
of the plate (thickness: h1). When using the optimized Rayleigh–Ritz method the
frequency coefficient V1 was minimized with respect to g.

All calculations were performed for h0/h1 =0·8 and, when dealing with an
orthotropic material, the following constitutive properties were used: D2/D1 =1/2;
Dk /D1 =1/3.

In the case of an isotropic plate the frequencies were evaluated for Poisson’s
ratio equal to 0·3 and 1/3 and when dealing with the orthotropic structure n2 was
also taken equal to 0·3 and 1/3.

Table 1 presents frequency coefficients V1 for the isotropic plate while Table 2
deals with the orthotropic configuration.
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The finite element results are extremely accurate in view of the high number of
elements used and the analytical results are in very good engineering agreement
with them as shown in Tables 1 and 2. The fact that a very simple polynomial
approximation gives high accuracy in a rather complex elastodynamics problem
is a remarkable fact. In general, the agreement is better in the case of plates simply
supported at the outer edge. For b/a=0·3 and c/a=0·4 and 0·5 one observes a
clear, dynamic stiffening effect.
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